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LElTER TO THE EDITOR 

Low firing-rates in a compartmental model neuron 

Paul C Bresslofft and John G Taylor$ 
t GEC-Marconi Ltd,Hint ksearchCentre,EastLane, Wembiey,Middlesex HA97PP.UK 
i Department of Mathematics, King’s College, Strand, London WC2R ZLS, UK 

Received 27 July 1992 

Abstract. A nonlinear relationship is obtained between the membrane potential of a 
compartmental model neuron as a function of input stimulation. This is used to show how 
shunting effects can lead to low output firinprates in associative memory networks. 

In a recent paper, Abbott [I] has shown how shunting effects can lead to a nonlinear 
relationship between the input current to a neuron’s soma and the incident rates of 
excitatory inputs synapsing on the neuron’s dendritic tree. Such a nonlinearity produces 
a low output firing-rate in the presence of high levels of excitation, thus providing a 
solution to the problem of high firing-rates found in network models based on neurons 
whose input current varies linearly with synaptic inputs. When these latter networks 
are in a state of self-sustained firing corresponding, say, to a dynamical fixed point of 
an attractor network 121, the neurons tend to fire at their maximum rate. Cortical 
neurons, on the other hand, tend to operate well below their maximum rate. Such a 
problem has received considerable attention within the context of associative memory 
networks, where the self-sustained Bring patterns are interpreted as memory states 0 - 5 1 .  

The analysis of Abbott [ 11 is based on Rall’s cable theory of current flow in a 
passive dendritic tree [6]. A complementary approach to representing the electrical 
properties of a neuron’s dendritic tree is to use a compartmental model [7]. In this 
model, the dendritic system is divided into sufficiently small regions or compartments, 
such that spatial variations of the electrical properties within a region are negligible. 
The advantage of the compartmental approach, which is used extensively in computa- 
tional studies of neuronal systems [SI, is that it provides a greater flexibility in modelling 
neurons and a greater economy of computation. 

In this letter, we derive an analogous result to Abbott’s [l], vis-Ci-uis the effects of 
shunting on the firing-rate of a neuron, using recent work on temporal pattem processing 
in a compartmental model neuron [9 ] .  (In [l], a compartmental model neuron is used 
in computer simulations rather than as the basis of analytical work.) We assume that 
the compartmental model neuron consists of a soma connected to a single dendritic 
tree idealized as a one-dimensional chain of 2M + 1 compartments labelled a = 
-M, . . . , M. The equivalent circuit of the a t h  compartment consists of a membrane 
leakage resistor R, in parallel with a capacitor C,, with the ground representing the 
extracellular medium (assumed to be an isopotential). Each compartment is joined to 
its immediate neighbours in the chain by the junctional resistors and R,,,,. 
Assuming that each compartment a has N synapses labelled (ak), k = 1,. . . , N, then 
the current at synapse ( a k )  is governed by a time-varying conductance Agmk in series 
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with a fixed reversal potential So,. It then follows from Kirchhoffs law that the time 
evolution of the membrane potentials V, i s  given by 

where (p ;  a) indicates that the summation over p is restricted to immediate neighbours 
of a. The last term on the right-hand side of equation (1) incorporates shrnting effects; 
the change in a compartment's membrane potential induced by a synaptic input depends 
on the size of the deviation of the membrane potential from the resting potential. Since 
each Agek is positive, the effect of each term Agek[S,, - V,] is for V, to tend towards 
Sak. Hence positive and negative S,, correspond respectively to excitatory and inhibi- 
tory synapses. 

To obtain a complete picture ofthe input-output response of a neuron, it is necessary 
to supplement the leaky-integrator equations (1) with details concerning action poten- 
tial generation at the axon hillock of the soma [SI. It will be adequate for our purposes 
simply to view the soma as a point processor that is isopotential with the dendritic 
compartment nearest to it, taken to be a =O. We shall assume that the neuron fires 
whenever Vo( 1 )  exceeds a time-dependent threshold h. The time-dependence of h 
represents the effects of refractoryperiod. That is, if A t  denotes the time that has elapsed 
since the neuron last fired then h ( A t ) = c o  for O < A t c t R  and h ( A t ) =  
h,,+ h ,  exp(-At/r,) for A t >  tR (until the neuron fires again). Here f R  is the absolute 
refractory period, whereas re determines the relative refractory period. 

Since equation (1) is formally linear in V = (V,, a = 0, +l ,  . . . , + M ) ,  it may be 
written as a matrix equation of the form [9 ,  IO] 

dV - = H (  I )  v(r) + U( 1 )  
d t  

Formally, equation (2) may be solved as [9,11] 

where T denotes the time-ordered product, T [ H ( t ) H ( t ' ) ]  = H ( t ) H ( t ' ) e ( t  - t ' ) +  
H(t ' )H( t )O( t ' -  t ) ,  which is required since H is a time-dependent, non-commuting 
matrix. The term T[exp(f dt" H ( t " ) ) l a p  is the Green's function or response function 
%(a, t ;  p, t') of the system. 

In general, equation (5) is difficult to analyse due to the dependence of H on the 
time-dependent conductances Age,. (Note that this is a direct consequence of the 
inclusion of shunting effects in equation (1). For if the time-dependent part of H is 
absent, as occurs when the shunting term -V, Z k  Ag,, is dropped from equation (l), 
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then the Green function 9(a, t ;  p, t ' )  reduces to the much simpler form [e('-")Q] =B. ) 
Therefore, we shall make two major simplifying assumptions concerning Agak to 
facilitate our analysis [ 9 ] :  (i) each action potential and post-synaptic potential is 
idealized as a Dirac delta-function spike, i.e. details of pulse-shape are neglected and 
(ii) the arrival times of the action potentials are restricted to be integer multiples of a 
fundamental unit of time lo. The time varying conductance Ag.,,(f) induced by an 
incoming stream of action potentials is then a sequence of conductance spikes of the 
form 

Ag=x(t)=Emk a ( t -mt , )Qek(m)  (6) 

where umk(m)  = 1 if an action potential amves at the discrete time mtD and is zero 
otherwise. The size of each conductance spike, E , ~ ,  is determined by factors such as 
the amount of neurotransmitter released on arrival of an action potential and the 
efficiency with which these neurotransmitters bind to receptors [ 111. 

The discrete time condition imposed on the amval times, assumption (ii), means 
that the inputs to the neuron are specified completely by the sequence of patterns 
A ( m ) = ( u , , ( m ) ,  a=O,*l, ..., fM, k = l ,  ..., N ) ,  integer m. Each pattern A ( m )  is 
a (2M + 1) x N matrix. We shall use a more concise representation of an input pattern 
by assuming that each compartment consists of two groups of identical synapses, one 
excitatory and the otherinhibitory. The input A ( m )  is then specified by the set {Ng'(  m), 
N c ' ( m ) }  where Ng'(m) ,  NC'(m) are the number of excitatory and inhibitory synapses 
respectively that receive an action potential at time m. Substituting equation (6 )  into 
(4) and using this representation of input patterns we obtain 

m a 0  

k ( O =  E S( t -mtD)u , (m)  (7) 

(8) 

where for convenience the capacitance C, has been absorbed into each E?' so that 
E?' is dimensionless. The excitatory and inhibitory reversal potentials S"." are taken 
to be a-independent. Observe that S"', ehe.i'>O whereas S"'S0. 

The presence of Dirac delta-functions in equation (7) allows the integrals in (5 )  
to be performed explicitly. In particular, the time-ordered product may be calculated 
using standard path-integral techniques to give, on setting tD = 1 and V ( 0 )  = 0 [9]  

"I30 
QmP(t)=a,, E a( r -mtD)q , (m)  

"ZZO 

q e ( m )  = s$'NC'(m)+ E!":'( m) 

U.(m) = EhC'S'C'N~'(m)+ & ~ ' S " ' N ~ ' ( m )  

m < t < m + l  (9) m ) Q  - C ( m )  vdt)=E[e"- e lmBxB(m) 
B 

forall positiveintegers m, where G,,(m) = S,,q,(m) and u.(m), q , (m) satisfy equation 
(8). Here X, is a discrete-time variable defined iteratively according to X,(O) = u,(O) 
and, for m > 0 

l a p X B ( m - 1 ) + u m ( m ) .  (10) Q - C ( m - l )  x,(m)=E[e e 

The main effect of shunting is to alter the local decay-rate of a compartment 
according to l / r ~ ' l / r , + q , ( m ) / ( r - m )  for m < t s m + l .  Since each qm is propor- 
tional to the number of concurrent inputs to the ath compartment (equation ( 8 ) ) ,  this 
suggests a mechanism whereby shunting can limit the size of response of the neuron. 
That is, constant high rates of stimulation can lead to fast rates of decay so that the 
steady-state values of the membrane potentials are lower than those that would occur 
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in the absence of shunting. To show how this can occur, we shall determine the 
steady-state values of the variables X,(m) in the presence of constant synaptic inputs. 
Suppose that the Lth compartment receives excitatory inputs at a constant rate E 
whilst every other compartment receives inhibitory inputs at a constant rate F. In other 
words, N?'(m) = N?'(m) = F(1- 8mL) for all m. Furthermore we shall take SF' 
to be a-independent with E ( ' ) F = E ( ~ ' E ,  and set S"'=O. (An analogous pattern of 
stimulation is considered by Abbott [l].) Then using equations (8) and (10) we obtain 

m 
X , ( m )  = &ce'S'e'E 1 [exp(nQ(E))],, (11) 

"=O 

where Q ( E ) - @  = Qmg + 6,,&"'E. 
It remains to determine the matrix exp(Q(E)). As shown in [9] ,  many of the 

qualitative features of the model can be determined by assuming that all compartments 
have identical properties and taking the limit M + 00. (In the case of an infinite dendritic 
chain, we do not have to worry about _edge effects arising from the compartments at 
*M.) Setting R, = R, C, = C, = R for all LI in equation (3) gives re = r, rm,,+, = 
y=rn+ , .  where l / r = 2 / y + l / ? ,  y=RC,  ? = R C .  Using standard results from the 
theory of random walks, it follows that for a uniform, idn i t e  dendritic chain [9], 
[exp(nQ(E))],, = e ~ p ( - n / r - n s ( ~ ' E ) I I , - ~ ~ ( 2 n / y )  where I .  is the modified Bessel 
function of integer order. The steady-state value of XD(m) is then given by 

The series on the right-hand side of (12) is convergent so that the steady-state X- is 
well-defined. Note that Xm determines the long-term behaviour of the membrane 
potentials V according to equation (9); we shall refer to X z a s  the steady-sfatemembrane 
potential of the a th compartment. For small levels of excitation E, X z  is approximately 
a linear function of E. However, as E increases, the contribution of shunting inhibition 
to the effective decay-rate becomes more and more significant so that X: eventually 
begins to decrease. This is illustrated in figure 1, where XF/S(" is plotted as a function 
of &"'E for ?>>y, y = l  and L = l  in equation (12) (cf figure 3 of [l]). 

Finally, using similar arguments to Abbott [ l ]  it can be shown that the nonlinear 
relationship between X z  and E in equation (12) provides a solution to the problem 
of high firing-rates. First, if is necessary to determine the output firing-rate of the 
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Figure 1. Steady-state value of the mem- 
brane potential at the soma as a function 
of the excitatory rate of inputs to the com- 
partment at e =  1. 
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neuron. In the presence of constant inputs, the membrane potential at the soma will 
reach some (time-averaged) steady-state vo. The larger vo, the faster the decreasing 
threshold h ( A t )  is crossed from below after firing and thus the greater the firing-rate 
z of the neuron. As shown by Amari [12], a reasonable approximation for z is a 
sigmoid function of vo. Hence, noting from (9) and (12) that voo.cXy, the average 
firing-rate of the neuron is z = f ( E ) = f , . J ( l + e x p [ g ( ~ - X y ( E ) ) ] )  for some gain g 
and threshold K. Here f,,, is the maximum firing-rate, which is determined by the 
absolute refractory period. 

Now consider a population of excitatory neurons in which the effective excitatory 
rate E impinging on a neuron is determined by the average firing-rate ( z )  of the 
population. Similarly, the inhibitory rate F is determined by the average firing-rate of 
a population of inhibitory interneurons. For a self-consistent picture, it is necessary 
to restrict the firing times of the neurons to be integer multiples of to. However, since 
tD could be made arbitrarily small, this is not a serious restriction. Alternatively, we 
can simply interpret equation (IO) as representing a discrete time, compartmental 
model neuron with the X, identified as the state variables of the neuron and, say, 
f /fmax equal to the probability that the neuron fires at each time step. (Such a discrete 
time model is a natural extension of the standard binary neuron used in artificial neural 
networks that incorporates spatio-temporal aspects of real neurons.) For a large 
population of neurons, a reasonable approximation is to take E = c(z) ,  for some 
constant c. Within a mean-field approach, the steady-state behaviour of the population 
is then determined by the self-consistency condition E = cf(E) [l]. Using graphical 
methods one finds that there are two stable solutions to this equation, one corresponding 
to the silent state E = 0 and the other to a state in which the firing-rate is considerably 
below f,.,. On the other hand, if Xr were a linear function of E then this latter stable 
state would have a firing-rate close to f,,.. 

This is illustrated by curve (b) of figure 2 where f / fmax is plotted as a function of 
E with X: satisfying (12), ~ ( ~ ) c f , ~ , =  1, and g-' = 0.03, K = 1.0. On the other hand, if 
X? is a linear function of E, i.e., the contribution of the term E(')€ to the exponential 
in equation (12) is dropped, then this latter stable state has a firing-rate close to fmrr, 
see curve (a) of figure 2. (The proof of these results is identical to that of [l].) Note 
that for certain choices of parameter values there is an additional solution to the 
self-consistency condition but this is unstable. 

Figure 2. Firing-rate/maximum firing- 
rate f/fm.. as a function of input excita- 
tion E for (a) linear and (b) nonlinear 
relationship between steady-state mem- 
brane potential Xr and E Points of inter- 

0 0.2 0.4 0.6 0.8 ' section with straight line are states of self- 

0 , 2  
0.4b,(b) , 1 
0 

&E sustained firing. 



L170 Letter to the Editor 

References 

[ I ]  Abbott L F 1991 Network 2 245 
[2] Amit D J 1989 Modeling Brain Function (Cambridge: Cambridge University Press) 
[3] Amit D J and Treves A 1989 Pme, Narl Acad. Sei., USA 86 7671 

Treves A and Amit D J 1989 J,  Phys. A :  Math. Gen. 22 2205 
[4] Rubin N and Sompolinsky H 1989 Earophys, Lett. IO 465 

Golumb D, Rubin N and Sompolinsky H 1990 Phys. Rev. A 41 1843 
[5] Buhmann J 1989 Phys. Rev. A 40 4145 
[ 6 ]  Rall W 1959 Exp. Neural. 2 503-32; 1969 3. Biophys. 9 1483, 1509 
[7] Fall W I964 Neural Theory and Modeling ed R F Reirs (Stanford, C A  Stanford University Press) 

[8] Koch C and Segev I (ed) 1989 Methods in Neuronal Modding (Cambridge, M A  M I 1  Press) 
[9] Bressloff P C and Taylor J G 1993 Spatio-temporal processing i n  a ComprtmenVdl model of a neuron 

pp 73-97 

Phys Reo. A submitted 
[IO] Perkrl D H, Mulloney Band Budelli~R W 1981 NGuroscienee 6 823 
[ I l l  Bressloff P C and Taylor I G 1991 Neural Nerworks 4 789 
[I21 Amari S 1972 IEEE Trans. Syst. M m  Cybern. SMC-2 643 


